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ON THE OSCILLATION OF THE LATERALLY

HETEROGENEOUS EARTH, I

Peter Musen

Abstract

The perturbative effects, as caused by lateral inhomogeneities in the Earth

structure and by Coriolis force, contaminate the originally toroidal and spheroidal

Earth's oscillations, making them of mixed type. For this reason, in order to

make the computation of the perturbations more uniform and homogeneous, we

suggest the expansion of Earth's free oscillations into a series in terms of

generalized harmonics familiar from the theory of angular momentum in quantum

mechanics. Making use of Gibbsian symbolism and of some operators from

the theory of angular momentum, we deduced the explicit expressions, in terms

of generalized harmonics, of the perturbative terms in the differential equation

of Earth's free oscillations. We also obtained decomposition of the strain tensor

in terms of canonical vectors. The integration problem for the cases of

geophysical interest will be discussed in subsequent reports.

g.. g .:.
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ON THE OSCILLATION OF THE LATERALLY HETEROGENEOUS EARTH, I

INTRODUCTION

In the present and forthcoming article we suggest an apparatus and scheme

for the computation of the perturbed elastic oscillations of the laterally inhomo-

geneous non-spherical Earth. The perturbative effects treated in this work are

additive to the solution of the "main problem" as obtained by Takeuchi (1950)

and by Alterman, Jarosch and Pekeris (1959), which represents the foundation

of all modern theories of the long period oscillations of the elastic Earth.

Methods being used to obtain the solution of the zero order are, more or less,

a paraphrase of the Pekeris method. These authors have assumed that the

density of the Earth's material and elastic parameters depend only upon the

distance of the particle from the Earth's center and that the perturbative effect

of the geostrophic force can be neglected. Under these suppositions the oscilla-

tion can be conveniently decomposed into a sum of spheroidal and toroidal

oscillations with the coefficients depending only upon the radius-vector..

The initial differential equation of the elastic oscillation can be split into

disjoint final systems of ordinary differential equations for the coefficients.

Each system must be integrated numerically using an adapted model of the Earth.

It has now become evident, however, that the results of modern seismic obser-

vations warrant the introduction of perturbative forces into the original Pekeris'

theory.

1
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The influence of lateral variations in density and elastic parameters (Toks6z

and Anderson, 1966), (Dziewonski, 1970), (Lopatina and Ryaboy, 1971), and the

perturbative effect of the geostrophic force, which causes the splitting of fre-

quencies (Backus and Gilbert, 1961), (Pekeris, Alterman and Jarosch, 1961)

are now being recognized in seismic records. The ellipticity correction, together

with numerous coupling effects, became important and shall be considered. On

occasion the Coriolis coupling between spheroidal and toroidal oscillations can

exceed all other couplings (Luh, 1974). We must also consider the degeneracy

and quasi-degeneracy of frequencies, familiar from quantum-mechanics. With

these considerations the expansion of the perturbed elastic vibrations in terms

of spheroidal and toroidal vector-harmonics can still be achieved (Arkani-

Hamed, 1972), (Madariaga, 1972), (Luh, 1973), (Dahlen, 1968, 1969).

It is doubtful, however, that the splitting of the displacement into toroidal

and spheroidal components provides the best possible theoretical and compu-

tational approach in the case of a rotating, laterally non-homogeneous non-

spherical Earth when numerous couplings, degeneracies and quasi-degeneracies

do occur. It seems that decomposition of oscillations into a sum of so-called

"generalized spherical harmonics" can provide a better service, because it

removes the discrimination between different kinds of oscillations and thus paves

the way for more direct and homogeneous computational procedures. The

generalized spherical harmonics are familiar from the theory of angular

momentum in quantum-mechanics. There are numerous recursive relations

2
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between them, and their products, which appear in the perturbing forces, can be

conveniently expanded into Clebsch-Gordon series.

It seems that Petrashen (1949) was the first to recognize the usefulness of

the generalized spherical harmonics in the theory of elasticity. In recent

years several works on the spectroscopy of the Earth were published which

make use of the generalized spherical harmonics (Burridge, 1969), (Phinney

and Burridge, 1973), (Smith, 1974) and the theory of group representations from

quantum-mechanics. Formation of the scalar differential equations of Earth's

perturbed oscillations is usually based on the application of covariant differentia-

tion of vectors and tensors involved, using Einstein summation convention, some-

times partially combined with Gibbsian symbolism (Backus, 1967). In the present

article we suggest the use of Gibbsian vectorial and dyadic symbolism, and of

operators familiar from the angular momentum theory in quantum mechanics

to establish the differential equations of the perturbed elastic-gravitational

vibrations of the Earth. The oscillations are decomposed along Petrashen's

vectorial harmonics.

The combined symbolism represents a fast and expedient geometrical way

to establish the vectorial differential equations governing the oscillations and

to convert them into the scalar equations. In the case of perturbed oscillations

of the Earth these differential equations are no longer disjoint. The resulting

scalar equations can be considered as a generalization of Pekeris equations and,

"3-
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like them, can be integrated only numerically using an adapted Earth model. After

the solution is obtained the oscillations can again be easily split into spheroidal

and toroidal parts.

BASIC RELATIONS

In this section we summarize some basic formulas to be used in the

exposition. By applying the dei-operator

v 1e i+. (1)
ar r ee sin 0

to the local unit vectors ee, e , er of the spherical system we deduce

Ve = +- (- eer + ece cot) ,
r

Ve = - 1 (+ e er + e ee cot 6), (2)

Ver = + - (ee,0 + ee ),
r

and, as a consequence, by forming the scalars and vectors of the symbolic

dyadics (2), we obtain:

cot 6
V-e = + cot

r

V- e 0 (3)

2
V-e r = +2

r

4
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1
V x e= + e,

r

1
Vx e = 1+- (- ee + er cot 6), (4)

r

Vx e = 0.r

Repeating the procedure, we have:

V2 e r = + (-es - 2 er sin 6 cos 0),
r2 sin2 A

V2 e 1 e., (5)

r 2 sin2 0

V2 er = - er
r
2

and

VV- e. = (ee + er sin 8 cos 0),
r 2 sin

2 0

VV e = 0 (6)

2
VV' er = -- rr

r2

We obtain a more compact system of formulas if we decompose vectors and

tensors which appear in the present exposition not along e9 , e ,, e r , but along

the isotropic canonical vectors

5
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e + - (+ e - ie) (7)

e = 1 (+ e. + ieo) (8)

and along

eo = er  (9)

It is convenient in the frame work of the present exposition to define the

the products of (7) - (9), scalar, vectorial and dyadic, in accordance with the

standard rules of classical vector algebra, considering the complex coordinates

as scalars.

From the orthonormality of ee, e, er we deduce:

e *e_e = e+ e+ e_ e 0 = e+ eo = 0,

e_ e, = - 1, eo * e o = + 1, (10)

e+ x e- = + ieo, e o x e_ = + ie_, e+ x e o = + ie+.

Elimination of ee , eO, er from the idemfactor

I = egeO + e~e. + ere r

in favor of canonical vectors leads to the representation

I = oeo - e+e- -ee+

which is useful in performing the rotational transformation of vectors and tensors.

6
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From (2) - (6) we deduce a set of basic relations:

Ve = + -eeo 1 (e_ + e+) e cot a]
r v/2

r /2

Ve - (e e+ + e+e_),r

and, by forming the scalars and the vectors of the symbolic dyadics (11) and

taking (10) into account,

cot 6
Ve +------,

rV2

= cot 0 (12)

Ve 0 = 0,

r V

Vr -- 0

V x e 0 = 0,
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V2e_ = 1 (e + eo V2sin O cos O),
r 2 sin2 0

1
V2 e - (e+ - e o v2 sin 8 cos 6), (14)

r 2 sin2 0

2%72e o  2e

r 2

1 1 1
V -e = - + (e_ -e+) + sin8 cos ,

r 2 s in 2  2 v/2

1 1 eo
VV'e+ = + 1 (e_ - e) + -- sin 8 cos , (15)

r 2 sin 2 a 1 2

2
VV e o =- e O.

r
2

The set

-+Ytm = e,Y,-1(,)'

Y eY (16)
Y0 m = e m, +1(9,k)'

Ym = o m,0o(e,0)

where -1' , ' Y 0 are particular elements of the set of generalized

spherical harmonics Ym,n, familiar from angular momentum theory, and they

constitute the basis of the expansion of the elastic displacement of the Earth

(Phinney and Burridge, 1973), (Petrashen, 1949). We have

8



= e-im cP o os ),
m,rn mn

where Pmn (cos 0) are the generalized associate Legendre functions (Edmonds,

1960), (Vilenkin, 1965).

The selection of (16) as a basis for the expansion removes the discrimination

between spheroidal and toroidal oscillations and makes the computation of

coupling effects more uniform and homogeneous. After the solution is com-

pleted we can again decompose it into spheroidal and toroidal modes. When no

ambiguity results we will omit, for the sake of brevity, the indices - and m

in (16).

The reduction of the vectorial differential equation governing the oscillations

to the scalar equations can be simplified by making use of the operators

H+ e- i  cot +  ,(+ sin e 7 )

H_ = e+ip -cot + 1 + i (17)

of infinitesimal rotations and by introducing the generalized del-operator:

V = e0  + - (e-'e+L - e+i'e-H+), (18)

where x , ¢ and 9 are Euler angles.

By applying the operator (18) to the elements

T ie-inolymn e m,n

of the irreducible representation of the rotation group and taking into account

(Edmonds, 1960), (Vilenkin, 1965)

9
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H+Tmn = - a ,n+1 Tm,n+1

HT = -a T
mn - tnm,n-l'

where

1/2

= [(+ n) ( - n + 1)

and

Ve-in = n (e, + e-) cot 'e-int,

we deduce after easy transformations:

VYmn = + (a,n+e Ym,n+ -, a,ne+Ym,n-1)

+ (e + e4 )Y cot 8. (19)

Taking (10) into account, we have

4 1 le e in 4
o x VYmn Y mn-1)+ n (e- e+) Y cot 8

m, rv'2 (a,n+l e ,n+1 + at, eYm,n_ - (20)

In particular

,VY - - Y1' (21)

and

Sat, 0 - + Y (22)
eo x Vm,O 0  

- r-m

The left-hand sides of (21)-(22) are the spheroidal and toroidal harmonics,

respectively. Thus, the generalized spherical harmonics Y-, Y+ represent

the linear combinations of the standard spheroidal and toroidal harmonics.

10
4-
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Making use of (19) and (11) we deduce:

m + a 0 (a oe-Y mo ,-e+ Y ,-2) e+rV2

1 y
y m,- le+ eo '

Ym + -- ,2 e-Ym,+ 2  ,1 m,o- (23)

r

1 t

YO 1 y (ee+ + e+e_)
m r m, 0O

+ r (aC ,eY+ 1 - , e Ym) eo
rm2 toe

and, as a consequence, taking (10) into account:

Vx Y+ a yo iY
tmr+ m m-rrv m r

VxY a, o o (24)

t rV- m r m

0 a,0 +Vx Y m + rve- +Y m ) ',

11
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and

V7.y+ = - y 0Y ,o o 2 t01 (25)Sm r mo m,O' (25)

DECOMPOSITION OF THE STRAIN TENSOR

In this section we deduce the canonical dyadic decomposition of the strain

tensor

1 (uV + Vu) (26)

assuming the canonical decomposition

u = U(r) Yo + U+(r) Y+ + U-(r) Y- (27)

of the displacement.

We have

Uo a dU+  dU- -)
Vu e dU Y + + yVue 0 \-r dYr+ dr (28)

(28)

+ (UoVoY + U+VY + UVY')

Taking (23) into account and rearranging the terms in two different manners, we

obtain the following two canonical dyadic representations of the gradient of the

displacement:

[dUo ia o

Vu= -dr eoYo + rJUo(e-Y+ - eY,)

(29)

- e+Y. 1 - U- eY+ e
r r

12



15

FdU + U0

+ eoY 1 - eY o

[dU- Uo+dr o - - e + Yo

+ i U- (a 2 e Y+ 2 - ale+Y0  e-,
r,2

and

Vu = + e o dr e oYo + dLr e+,Y- + r eY
(30)

+ e+ Uo + - e-Yo + - o Y-1
r rv1/

ia° o0

+ (i-1 1

- 0- U-eY

+ e U+ - e+Yo + - eoY+1

210

+r r)

rv/

ia 2 1
+ U- + - e-Y+2 0 +1

13
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Combining (29) with (30) transposed, we obtain the canonical decomposition

of the strain tensor:

E = (E 0 eoY0 + E'+e+Y_- + -OeY+l) eo

(31)
+ ( 0 +eoY ++eY + + + eYo) e+

+ (E- eoY+ 1 + e +-eY o + -- eeY+2) e_,

where

oo _ dUo

dr

++ -1 +

rJv

i a 2E-= +t U-,

+o = o+ 1 dU+ U+  iao o)4- \ U0  r 0 (32)

-o o- = 1 dU U- iao
2 dr r ri

-+ 4- UO ia +
E = - +- ( - U-)

r 2 rv'

By forming the vector of the dyadic (29), i.e. replacing all dyadic products

by the vectorial ones, and taking (10) into account, we deduce

Vx u = ZOYO + Z+Y+ + Z-Y-,

14
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where

Zo = + (U+ + U-)
rV2

Z + ao o edU+ U (33)
r2 \dr r

auO i U- )

Z = + Uo~+ + .

Similarly, by forming the scalar of (29), i.e. replacing the dyadic products by the

scalar ones, we have

V-u = XYo,  (34)

where

dUo 2U° ia°
Xo (U dUo + + (U- - U+). (35)

dr r rv-i

Repeating the process for V x u, we obtain:

V x Vx u = WOYO + W+Y + W-Y-, (36)

where

Wo = (Z + Z+),

W+ = + ao Z - dZ+ 
(37)

rv2~ dr

15
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_ 0  + i dZ- + ) (37)

rV-2 dr r

From (34) and (21) we deduce

dXo iao + (38)VVu = d  Yo + X0 (Y - Y+),
dr r2

We shall need (29) - (38) in the transformation of the differential equation of

oscillations of the Earth. In this process we shall also make use of the Clebsch-

Gordon expansion

Y YP = C(t, p, v; m, q)C(, p, v: n, s) Y (39)
mn qs m+q,n+s

where the symbols C({, p, v; a, /) designate Clebsch-Gordan coefficients. They

can be computed directly on an electronic computer or can be obtained from

existing tables.

Every scalar in the present theory can be represented as a series in har-

monics and every vector as a series in Y~, Ym' Y ( = 1, 2, 3, ... ;

m = - , . . . , + 4). The coefficients in the expansion depend only on r.

DIFFERENTIAL EQUATION OF THE ELASTIC OSCILLATIONS OF THE EARTH

If we assume hydrostatic equilibrium, but permit lateral inhomogeneities in

density and in elastic parameters, then the differential equation of the elastic

oscillations of the Earth takes the form:

16
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a2 u u
p _+ 2pk x -=V--V(pu) VV

't 2  t

+ V(pu VV) + pVq, (40)

where p is the undisturbed density, -V - the interior gravitational potential (it

includes the potential of the centrifugal force), Q - the angular velocity of

rotation of the Earth, k - the unit vector along the polar axis, - V - the increment

in internal geopotential due to redistribution of masses, and a -the stress tensor,

-c = XIVu + p(uV + Vu). (41)

We assume that the density p and the elastic parameters k, bt can be represented

in the form:

p = p(r) + p,
(42)

X = X(r) + 8 ,

kI= JPo(r) + 8 IL,

where the perturbative terms SX, SX, S/ represent the lateral deviations from

the spherically symmetric mean values po, k 0 , /." We assume the existence

of the expansions

+o q-+p

p = p(r) Yoq,'

p-1 q--p

+ C q=+p

8 = Xq(r) Yo
p 1 q -p

17
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+co q=+p

8/ = p (r) YPo (43)
p=l q=-p

(p = 1, 2,... ; q = - p, ..., + p)

in terms of associated Legendre functions -. For the geopotential inside a

given domain of integration we assume an expansion of the form

V = Vo (r) + 3V,

8V = Vk(r)YkO.0 (4 3 f)

8,k

With the domains of convergence determined by the shape and position of the

surfaces of discontinuity inside the Earth. In addition to (42) we found it useful

to introduce the combination:

+m q-+p

= o + ,8 = X + 2 =,8o(r) + pq (r) YP O'
P q (44)

30 = X0 
+ 2Lo, Ipq = kpq + 2pq.

Substituting (41) into (40) and taking the Fourier transform (or searching for a

periodic solution) we obtain

.p(-w2 I + 2ifwck x I) u = VV. u - /.4V xVx u (45)

+ 2E V + (V u) VX - V (pu) VV + V(pu VV) +pV,

where u now designates the transform of the displacement.

18
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We assume that the higher order terms

8pV8V and (VSp) (VSV)

are negligible. Under this assumption the equation (45) takes the form:

p(-w2I + 2iwak x I) - u = V/3 V u - \V xVx u

+ 2E - V + (V. u) V - V (pou ) VVo + V(Pou - VVo) + pV41

- V- (up) VVo + V- pou) VV - V(pu - VVo) -V(pou VV)]. (45')

The last four terms are perturbative. They represent the effects of the lateral

inhomogeneities in density and of the deviation of the figure of the Earth from a

sphere.

UNPERTURBED PROBLEM

The solution of zeroth order is obtained under the assumptions that the

density, elastic parameters and the interior geopotential are spherically sym-

metric functions, that the perturbative effect of the geostrophic force is negligible

and the oscillations are purely elastic. For the solution of the zeroth order we

assume an expansion of the form:

+m m--+4

U I Utm' (46.)

where

ut. = Uo(r, w) Yo + Um(r, w) Y + U (r, O) Y, (47)

19
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and the eigenfrequency w is determined from the boundary conditions on the

surfaces of discontinuity, assumed to be welded together (if the materials are

solid). The radial functions Um, U , U satisfy a set of disjoint ordinary

differential equations. For each utm they can be integrated separately. For the

zeroth order solution of the form (47) we have for the particular terms in the

differential equation (45), taking (31) - (38) into consideration (we repeat here

the complete set of formulas given previously),

VV dXo YO + %xy- _ +) (48)

Vd d0 Lr rv

where

XO d 2 Uo + i (U- - U+), (49)

ttv x u = 0 0 + a( Z + + Z) Yo (50)

+ rd -dr r

r(dr r

where

ZO = + (U + U-),
rv2

Z+ = +---a Uo -i d U + U) (51)
r2v \dr r/

soL .dU- U-

dr r

20
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2E V7
1  = 2 ( 00y 0 ( + O++ e -- ), (52)

dr

where

oo dUo

dr

+ o+ U1 dp ) + (53)

o- 1 dU- U-i. ( o
2dr r rV2

dh o
(V.u) V =d- XOYO, (54)

dr

dV2 (dpo ,V" (pu) VV = doV \d +Po X  Y, (55)

and, taking (21) into consideration, we have:

V(Po u *-V V ) P= Uo P Uo d (Y_ Y+). (56)
r2 -TJ r V-2 dr)

For the increment of the interior geopotential we have

= P(r) Yo, (57)

assuming the Earth to be a selfgravitating system. From (57) we have:

V dP yo + a p(y- _ y+), (58)
dr r2

21
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and, taking

V2Y Y0
r 2

and (25) into account, the Poisson equation

V2 = + 4-iGV" (pu) (59)

becomes

d2P 2 dP a2 4G dpo (60)
- + P = 47TG PoX °  (60)

dr 2  rdr r dr

the same as in the Pekeris work. For the sake of brevity we systematically

omitted the indices -t and m in the equations (48) - (60).

Substituting (48), (50) or (36), (52), (55), (56) and (58) into (45') and keeping

only the terms of the zeroth order we obtain the differential equation:

pow/a dX °  dLO d X'

- poc2u = 8o dXo - WOo + 2 d OO + Xod-0
dr dr dr

(2 dVo d2V iao dV P Yo
- po U T ( - Ur dr dr2/ r2 dr dr

it
+ -ao ,X +xo p ) - _y+)

rV2

+ 2 - - l W Y"  + 2io+ - z ) Y + (61)
dr dr22

22
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or, in scalar form

dXo o + 2 E 0 + xo dX (62)- P o dr oW  + 2 drE dr

(2 dVo d 2 Voo iao dVo dP

rdr dr2 r/ dr dr'

-po U = + Ko- W +2 Eo-

d-(63)- po2U+ = - Ko - oW + 2 2 EO+

dr

where

ia° X0 dV° p)
K + X- + poUo d + Po (64)

and Xo is given by (35), Wo, W-, W + by (37) and (33), and 6 0 0 , E0 - 0+ by

(32).

PERTURBATIVE TERMS

In this section we give the typical perturbative terms in the differential

equation of the elastic oscillations (45'). These typical terms carry the influence

on um of the coupling effects between ppq, Kpq,' pq and Usk and of the geo-

strophic force. In developing the formulas we assume that the square of the

displacement (and frequency) can be obtained by means of the Schrodinger-

Rayleigh technique as a linear combination of Petrashen's harmonics.
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From (38) and (44):

F1 = /VV- u

; k q ' m + 1; P -) YY + 1; ; Y (65)
S 0 q mkq 

where

1; mk O) + C(s, p, t; k, q) C(s, p, t; 0, 0) 5 k +q,mpq dr

(1 ) iaOxo (66)

sk = + C(s, p, f; k, q) C(s, p, t; + 1, 0) Sk+q,mpq sk'

(i; = - C(s, p, t; k, q) C(s, p, ; -1, 0) sk+1 , m p q  X'

and from (36) and (43):

F = IV xVx u

=+ 2; k o m k q') y- + 2; kq) y (67)

where

(2; ; p = + C(s, p, t; k, q) C(s, p, t; 0, 0) 8 k+q,m/.pqWO k

(2; ' ; - = + C(s, p, t; k, q) C(s, , ; + 1, )W (68)

(2; s pmk +) = + C (s , p, ; k, q)) 8k+q pq k

From (21), (31) and (43):

F 3 = 2E.Vu

tsp. y 0sp; y- + ; s q; +) y+ (69)
= ; kq' 0 m +  m kq ' m kq m'
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where

(3; P S P = + 2C(s, p, d; k, q) 8 k+q,m

+ E
00 C(s, , 0 ; , 0)

I d sk+p P

rp p[E O C(s, p, ~; -1, + 1) - EkC(s, p, ; + 1,

(3; spmkq- = + 2C(s, p, 4~; k, q) 8k+q,m

S1, 0(70)
d e C( S  ( p, ; 1, )

SLpq .[E , C(s, -, ; + 1) - E C(s, , ; + 2, - 1)

rv2

(3; ;k s P +) = + 2C(s, p, 4; k, q) Sk+q, m

+ dpq C ( s, P, ; _ 1, O)

iap

r pq lE C(S, p, 4; -2, + 1) - E kC(S, p, 4; O, -1)

where, in accordance with (32):

dUo
0 0  sk
sk dr

++ ia (71)

sk rv U sk'

E-- s,+2
sk = + ~- Usk'

r V2
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0+ Uk
+o = o+ 1 dUk Usk so (1Esk sk 2+  

dr r sk '

1 d) 
(71)

-o 0- _ 1 U;k U-k io (0 (7U)
S sk 2 \d r r sk '

UO ia
- +  - sk so -
sk = sk v k sk )

From (21), (34) and (43):

F4 = -'u) VX

; .k ; 0) Ym +(4 m k q m k (72) q
;mkq' m ; mkq' ) ' )m

where

4 ; mk q' p' + C(s, p, 4; k, ) C( 0, 0) k+q,mXOk

4; P; -) = + C(s, p, ; k, q) C(s, p, ; 0, 1) qm ia XOk
;m k q + rvm (73)

4; p .; + C(s, p, t; k, q) C(s, p, 4; , 1) Sk+q m  " k'
mkq' M- 71p 7 '2sk'

and again from (21), (34) and (43):

F = V (u8p) VVo= s s p 0) Ym (74)

where

; k ) C(s, ; k, q) Sk+qm dVo

Upkpq U "X k) C(s, p, t; 0, 0)  
(75)

+ p E-sk k + ' sk
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F6  V (pou) V8V

(6; - sp ) Y (6 p; -) Y + (6; P; + Ym

where

(6; s pm ) =) + C(s, p, t; k, q)C(s, p, '; 0, ) Sk+q,m

m kk q pP
x  

P)q(dp0  dV
dr sk + sk dr

(6; t -)= + C(s, p, t; k, q) C(s, p, t; 0, + 1) k+q,m d pO O + k (76)

iapo

V qr/2 pq

p +p U0 O X(6; m k = - C(s, p, t; k, q) C(s, p, t; 0, -1) Sk+l \dr sk + PoXk

iao
pO

= (7;mkq ;) + 7; -)Y + ; + Ym kmkq' q m

where

(7 /s 0) = + C(s, p, t; k, q) C(s, p, t; 0, 0) Sk+q,mm k q'

r \PpqsOk dr/'

(7; S -) = (7; +) = + C(s, p, t; k, q) C(s, p, te; 0, 0) k+q, (77)

rap,° 0 0Vo

r2 pq sk ddr)
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F 8 = V(pou 'V8V)

(8; o;) Ye, + (8;f s P; Y +(8; t + Y
= ; mk q m+m( m k mkq m k m'

where

8; m k q; d ); Asp ]
Sm k q dr m k q

( sp P 8 . i,° i Sp (78)
mkq' mkq' r mkq

and

i ap ]0

+ PoVq [C(s, p, t; +1, -1) Uk - C(s, p, /t; -1, +1) U+

r /2 sk

In order to obtain the representation of a typical term in the expansion of the

geostrophic force

iF 6 = 2Poicowk x u

We substitute into the last expression

k = - ee sin 0 + er cos 6

or

1
k = +. (e+ - e_) sin 0 + e 0 cos 0

and

U = U-1,im + Ut, m + Ut+l,m
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Taking

pl p p1 pl _ i sin 8
0,+1 +1,0-= ,- ~1,0 2

P 0 = + cos 0

into consideration and making use of the Clebsch-Gordan expansion, we obtain

for the typical term in F9 :

F9  (9 0) + (9; -) (9; i) Y+Y (80)

where

(9 t; 0)= C( -1, 1, t; m, 0) [C- 1, 1,{; -1, +1) U ,m +C(-1,, 1, ; +1, -1)U _ m

+C(t, 1, {; m. 0) [C (', i t; -1, +1)Ut + C ( 1, , -1) U;]

+C( ,+1, 1, 't; m, 0) [C(t+l, 1, 'E; -1, +1) U +  +C(t+l, 1, {t; +1, -1) U,+1m]

9 m; -) =C(t- 1, 1, t; m, 0) [C(t- 1, 1, 4; 0, +1)UO_ , + iC(t- 1, 1, t;+1, O) U _,]

+C( (t, 1, t; m, 0) [C (, 1, t; 0, + 1) U + iC(1I, 1, t; +1, 0) U- ] (81)

+ C(+ 1, 1, t; m, 0) [C(t + 1, 1, t; 0, +1) U1+1' m + iC( +1, 1, ; +1, O) U +1,m

9 +) = C( - 1, 1, t; m, 0) [C(t - 1, ;, - 1) UO , - (--,iC(- 1, 1, ; - 1, 0) U

+C(t, 1, t; m, 0) [C(t, 1, t; 0, -1)U0 - iC(t, 1, ;1, 0) U+ I

+ C (+ 1, 1, t; m, 0) [C ( + 1, 1, t; 0, 1) U0, - iC( + 1, 1, t; - 1, o0) U +

Finally, for the perturbative term

F1o = (W2 pu
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we obtain:

Flo = (10; mP; 0) Y. + 0; (1 t k p + 10; k p+) y+m k q O m k q me, k q sp

where

10;m k q 0) PpqC(s, p, '; k, q) C(s, p, '; 0, 0) Sk+q,m'

(10; ~ s p  -)  o 2pC(s, p, R; k, q) C(s, p, '; +1, O) k+qm (82)S(10;sk q'

0; k q' = oPpqC(s, p, t; k, q) C(s, p, 4; -1, ) k+qm

In the group of formulas (66), (68), (70), (73), (75), (77), (79), (83) the selection

rules are

Is -pi :5 t s +p

k + q=m.

and

Ik[< p, ImI < {.

CONCLUSION

The proper understanding of the mechanics of free oscillations of the Earth

permits us to improve our knowledge about the internal structure of the Earth.

Free oscillations are normally expanded into a series of vectorial and toroidal

harmonics, assuming spherical symmetry of the Earth. However, the perturbative

effects of lateral inhomogeneities, of the Coriolis force, and of couplings between

the oscillations are now also being considered in seismology. They cause the

splitting of frequencies and "contaminate" the originally pure toroidal or pure

spherical oscillations. The originally toroidal oscillations aquire perturbative
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spheroidal components and vice versa. For example, the Coriolis force adds

radial components to the toroidal ones (Mac Donald and Ness, 1961). Thus we

can talk only about oscillations predominantly spheroidal or predominantly

toroidal. For this reason, and to make to computations of the perturbative effects

more uniform and homogeneous, we suggest in the present work the expansion

of perturbative effects in the free oscillations of the Earth in terms of vectorial

generalized harmonics familiar from quantum mechanics. We give the explicite

form of those perturbative terms in the differential equation of the Earth's

oscillations which are caused by the lateral inhomogeneities and by the Coriolis

force. The problem of integration for the cases of geophysical interest and of

degeneracy we shall treat in subsequent reports.
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